Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
mBio ; : e0378821, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-2270955

ABSTRACT

The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here, we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed 3-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of1.25-3.18). This study thus overviews viral evolution and vaccine breakthroughs in the Delaware Valley and introduces a rigorous statistical approach to interrogating enrichment of breakthrough variants against a changing background. IMPORTANCE SARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here, we report analysis of 2621 surveillance isolates from people diagnosed with COVID-19 in the Delaware Valley in southeastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a 3-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.

2.
Genome Biol ; 22(1): 169, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1388811

ABSTRACT

BACKGROUND: Rapid spread of SARS-CoV-2 has led to a global pandemic, resulting in the need for rapid assays to allow diagnosis and prevention of transmission. Reverse transcription-polymerase chain reaction (RT-PCR) provides a gold standard assay for SARS-CoV-2 RNA, but instrument costs are high and supply chains are potentially fragile, motivating interest in additional assay methods. Reverse transcription and loop-mediated isothermal amplification (RT-LAMP) provides an alternative that uses orthogonal and often less expensive reagents without the need for thermocyclers. The presence of SARS-CoV-2 RNA is typically detected using dyes to report bulk amplification of DNA; however, a common artifact is nonspecific DNA amplification, which complicates detection. RESULTS: Here we describe the design and testing of molecular beacons, which allow sequence-specific detection of SARS-CoV-2 genomes with improved discrimination in simple reaction mixtures. To optimize beacons for RT-LAMP, multiple locked nucleic acid monomers were incorporated to elevate melting temperatures. We also show how beacons with different fluorescent labels can allow convenient multiplex detection of several amplicons in "single pot" reactions, including incorporation of a human RNA LAMP-BEAC assay to confirm sample integrity. Comparison of LAMP-BEAC and RT-qPCR on clinical saliva samples showed good concordance between assays. To facilitate implementation, we developed custom polymerases for LAMP-BEAC and inexpensive purification procedures, which also facilitates increasing sensitivity by increasing reaction volumes. CONCLUSIONS: LAMP-BEAC thus provides an affordable and simple SARS-CoV-2 RNA assay suitable for population screening; implementation of the assay has allowed robust screening of thousands of saliva samples per week.


Subject(s)
COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Nucleic Acid Probes/genetics , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity
3.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066822

ABSTRACT

The severe acute respiratory coronavirus 2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. The epidemic accelerated in Philadelphia, PA, in the spring of 2020, with the city experiencing a first peak of infections on 15 April, followed by a decline through midsummer. Here, we investigate spread of the epidemic in the first wave in Philadelphia using full-genome sequencing of 52 SARS-CoV-2 samples obtained from 27 hospitalized patients collected between 30 March and 17 July 2020. Sequences most commonly resembled lineages circulating at earlier times in New York, suggesting transmission primarily from this location, though a minority of Philadelphia genomes matched sequences from other sites, suggesting additional introductions. Multiple genomes showed even closer matches to other Philadelphia isolates, suggestive of ongoing transmission within Philadelphia. We found that all of our isolates contained the D614G substitution in the viral spike and belong to lineages variously designated B.1, Nextstrain clade 20A or 20C, and GISAID clade G or GH. There were no viral sequence polymorphisms detectably associated with disease outcome. For some patients, genome sequences were determined longitudinally or concurrently from multiple body sites. In both cases, some comparisons showed reproducible polymorphisms, suggesting initial seeding with multiple variants and/or accumulation of polymorphisms after infection. These results thus provide data on the sources of SARS-CoV-2 infection in Philadelphia and begin to explore the dynamics within hospitalized patients.IMPORTANCE Understanding how SARS-CoV-2 spreads globally and within infected individuals is critical to the development of mitigation strategies. We found that most lineages in Philadelphia had resembled sequences from New York, suggesting infection primarily but not exclusively from this location. Many genomes had even nearer neighbors within Philadelphia, indicating local spread. Multiple genome sequences were available for some subjects and in a subset of cases could be shown to differ between time points and body sites within an individual, indicating heterogeneous viral populations within individuals and raising questions on the mechanisms responsible. There was no evidence that different lineages were associated with different outcomes in patients, emphasizing the importance of individual-specific vulnerability.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , A549 Cells , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Female , Genome, Viral , Humans , Male , Middle Aged , New York/epidemiology , Philadelphia/epidemiology , Phylogeny , Polymorphism, Genetic , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL